Mechanism of Akt1 inhibition of breast cancer cell invasion reveals a protumorigenic role for TSC2.
نویسندگان
چکیده
Akt1 is frequently up-regulated in human tumors and has been shown to accelerate cell proliferation and to suppress programmed cell death; consequently, inhibition of the activity of Akt1 has been seen as an attractive target for therapeutic intervention. Paradoxically, hyperactivation of the Akt1 oncogene can also prevent the invasive behavior that underlies progression to metastasis. Here we show that overexpression of activated myr-Akt1 in human breast cancer cells phosphorylates and thereby targets the tumor suppressor tuberous sclerosis complex 2 (TSC2) for degradation, leading to reduced Rho-GTPase activity, decreased actin stress fibers and focal adhesions, and reduced motility and invasion. Overexpression of TSC2 rescues the migration phenotype of myr-Akt1-expressing tumor cells, and high levels of TSC2 in breast cancer patients correlate with increased metastasis and reduced survival. These data indicate that the functional properties of genes designated as oncogenes or tumor suppressor genes depend on the context of the cell type and the tissues studied, and suggest the need for caution in designing therapies targeting the function of individual genes in epithelial tissues.
منابع مشابه
Aerial Parts of Peucedanum chenur Have Anti-Cancer Properties through the Induction of Apoptosis and Inhibition of Invasion in Human Colorectal Cancer Cells
Background: The Peucedanum species have many pharmacological effects due to the presence of coumarins, flavonoids, phenolic compounds, and essential fatty acids in these species. In this study, for the first time, the anticancer activity of Peucedanum chenur methanolic extract via the induction of apoptosis and inhibition of invasion in HCT-116 human colon cancer cells was investigated. Methods...
متن کاملMetastasis inhibition by BRMS1 and miR-31 replacement therapy in claudin-low cell lines
Objective(s): The growing trend of research demonstrates that dynamic expression of two metastasis repressor classes (metastasis suppressor genes and anti-metastatic miRNA) has a close relationship with tumor invasion and metastasis. Using different strategies, it was revealed that cellular levels of miR-31 and Breast cancer Metastasis Suppressor1 (BRMS1) protein, whic...
متن کاملInhibition of breast cancer metastasis by co-transfection of miR-31/193b-mimics
Objective(s): Various studies have been conducted to reduce the metastatic behavior of cancerous cells. In this regard, ectopic expression of anti-metastatic microRNAs by miR-mimic and miR-restoration-based therapies could bring new insights to the field. In the present study, the consequences of co-transfecting breast cancer cell lines with miR-193b and miR-31 were investigated via invasion an...
متن کاملEffects of combined 5-Fluorouracil and ZnO NPs on human breast cancer MCF-7 Cells: P53 gene expression, Bcl-2 signaling pathway, and invasion activity
Objective(s): The significant contribution of nanoparticles to cancer treatment has attracted therapeutic attention. The present study aimed to evaluate the synergistic effects of 5-fluorouracil (5-FU) and zinc oxide nanoparticles (ZnO NPs) as multimodal drug delivery on human breast cancer MCF-7 cells.Materials and Methods: In this in-vitro study, the impact of 5-FU and ZnO NPs in the sin...
متن کاملAKT1 inhibits homologous recombination by inducing cytoplasmic retention of BRCA1 and RAD51.
AKT1 is frequently up-regulated in sporadic breast cancer, whereas BRCA1 is frequently mutated in familial breast cancer. Because BRCA1 is involved in homologous recombination (HR), we addressed whether AKT1 also has an effect on this process. We showed that AKT1 repressed HR through cytoplasmic retention of BRCA1 and RAD51 proteins, resulting in a BRCA1-deficient-like phenotype. This process d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 11 شماره
صفحات -
تاریخ انتشار 2006